Dedekind axiom - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Dedekind axiom - vertaling naar russisch

THESIS IN MATHEMATICAL LOGIC
Cantor-Dedekind theorem; Cantor-Dedekind Theorem; Cantor-Dedekind axiom

Dedekind axiom      

математика

аксиома Дедекинда

принцип Дедекинда

Dedekind section         
  • irrational]], [[real number]]s.
METHOD OF CONSTRUCTION OF THE REAL NUMBERS
Dedekind cuts; Dedekind section; Completion (order theory); Dedekind's Axiom; Dedekind Cut

математика

дедекиндово сечение

Dedekind         
  • Dedekind, before 1886
GERMAN MATHEMATICIAN (*1831 – †1916)
Julius Dedekind; R. Dedekind; J.W.R. Dedekind; J. W. R. Dedekind; Richard dedekind; Julius Wilhelm Richard Dedekind; Dedekindian; Dedekind, Richard; Dedekind

математика

дедекиндов

Definitie

Axiom of Comprehension
<mathematics> An axiom schema of set theory which states: if P(x) is a property then x : P is a set. I.e. all the things with some property form a set. Acceptance of this axiom leads to Russell's Paradox which is why Zermelo set theory replaces it with a restricted form. (1995-03-31)

Wikipedia

Cantor–Dedekind axiom

In mathematical logic, the Cantor–Dedekind axiom is the thesis that the real numbers are order-isomorphic to the linear continuum of geometry. In other words, the axiom states that there is a one-to-one correspondence between real numbers and points on a line.

This axiom is the cornerstone of analytic geometry. The Cartesian coordinate system developed by René Descartes implicitly assumes this axiom by blending the distinct concepts of real number system with the geometric line or plane into a conceptual metaphor. This is sometimes referred to as the real number line blend.

A consequence of this axiom is that Alfred Tarski's proof of the decidability of first-order theories of the real numbers could be seen as an algorithm to solve any first-order problem in Euclidean geometry.

However, with the development of axiom systems for synthetic geometry that filled in the axioms that Euclid implicitly assumed, and the development of modern notions of the real numbers, both the Euclidean line and the Reals are complete Archimedean fields, thus canonically isomorphic, and the Cantor–Dedekind "axiom" is actually a theorem.

Vertaling van &#39Dedekind axiom&#39 naar Russisch